Dye-sensitized solar cells (DSSCs) can be used as greenhouse glazing materials in agrivoltaic systems because they are translucent, have different colors, and can produce electricity. However, the light quality of DSSCs differs from that of sunlight, and the visible light transmittance is low. Therefore, we compared the plant shape, growth, and leaf color of coleus, a highly photosensitive plant, under transparent glass and red-colored DSSCs. Coleus ‘Highway Rose’ was grown in transparent (T, the control), shaded (S), and DSSC (D) chambers maintained at 23 ± 2 °C. The DSSC chambers were additionally illuminated with blue (B), green (G), white (W), B+G, and R+B+W light-emitting diodes (LEDs) (D+L) at 60 μmol·m−2·s−1 photosynthetic photon flux density for 15 h from 05:00 to 20:00. The coleus generally exhibited good growth under the T treatment. However, the light quality of DSSCs differed from that of sunlight, and the visible light transmittance decreased. Coleus exhibited increased growth and leaf color characteristics under the supplemental B lighting treatments (D+L(RBW), D+L(B), D+L(BG), and D+L(W)). Supplemental lighting with B LEDs using DSSCs improved plant morphology growth and leaf color. On the other hand, supplemental G lighting reinforced the shade avoidance syndrome. Moreover, DSSCs could aid in reducing the energy required to control the environment.