Background: Pathogen inactivation (PI) technologies for platelets aim to improve transfusion safety by preventing the replication of contaminating pathogens. However, as a consequence of treatment, aspects of the platelet storage lesion are amplified. Mirasol treatment also affects platelet signal transduction and apoptotic protein expression. The aim of this study was to examine the effect of Mirasol treatment on the generation of reactive oxygen species (ROS) and subsequent oxidative stress. Methods: Pooled platelet concentrates were prepared in platelet-additive solution (70% SSP+ / 30% plasma). ABO-matched platelets were pooled and split, and treated with the Mirasol system (TerumoBCT) or left untreated as a control. Platelet samples were tested on day 1, 5, and 7 post-collection. Results: Mirasol-treated platelets had increased formation of ROS by day 5 of storage. Oxidative damage, in the form of protein carbonylation, was higher in Mirasol-treated platelets, whilst no effect on nitrotyrosine formation or lipid peroxidation was detected. The NF-κB signaling pathway was also activated in Mirasol-treated platelets, with increased expression and phosphorylation of NF-κB p65 and IκBa. Conclusion: These data demonstrate that Mirasol-treated platelets produce more ROS and display protein alterations consistent with oxidative damage.