Background: Thus, the main advantages of AFM in the study of biological objects are a high resolution, ease of sample preparation, determination of morphometric parameters, the study of objects in a native environment for them (in solution), the study of viscoelastic, charge, hydrophobic properties of objects.
Methods and findings:In order to evaluate the possibility of atomic force microscopy use in the evaluation of paraneoplastic changes in erythrocytes of albino rats in stationary and terminal phases of experimental ovarian cancer, we biochemically determined the levels of lipid peroxidation products (malondialdehyde, ketodienes, diene conjugates and Schiff bases), the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione-S-transferase), and the levels of oxidized and reduced glutathione. Cytoarchitectonics, cross section and rigidity of red blood cells were assessed by atomic force microscopy. The reliability of the correlation between values was assessed with Spearman method. We found increased level of malondialdehyde, diene conjugates and ketodienes and increase in the activity of antioxidant enzymes-superoxide dismutase, catalase and glutathione-S-transferase simultaneously with reduction of reduced glutathione level and ratio of reduced and oxidized glutathione in erythrocytes during experimental ovarian cancer progression. At the same time there has been a significant increase in the indexes of reversible and irreversible transformation and rigidity of the membranes of red blood cells, which correlated with indicators of lipid peroxidation and antioxidants.Conclusions: Thus, the use of atomic force microscopy makes it possible to adequately assess paraneoplastic changes in red blood cells in the dynamics of the progression of experimental ovarian tumors.