The use of solid waste such as ceramic sludge, ceramic rollers, and magnesite was studied to obtain cheap refractory ceramics at temperatures of 1300 °C based on XRF, XRD SEM, EDX, bending strength, and dielectric properties. The prepared samples were examined. The results showed that the significant crystalline phases formed were mullite, spinel, and corundum. They also showed that mullite hindered the formation of cordierite and enhanced spinel formation. With increased cordierite content, the microstructure varied from fine grained to coarse grained. Bending strength increased with increasing mullite content and bulk density, ranging from 10.80 to 13.50 MPa. Bulk density increased with the increase in mullite content and sintering temperature and ranged from 1.99 to 1.94 g/cm3, while the percentage of porosity and water absorption decreased and ranged from 29.40 to 38.83, respectively. To examine the effect of the produced phases on the dielectric characteristics, the permittivity (ε′), dielectric loss (ε″), and AC conductivity (σac) were measured in the frequency range of 10−1 Hz to 106 Hz. As the concentration of cordierite increased, there was a noticeable drop in ε′ from 35.6 to 8.2 and σac from 10−8 s/cm to around 10−11 s/cm and high values of resistivity from 108 cm/s to about 1010 cm/s, suggesting that this material might be an excellent insulator.