Hot air drying is the most common processing method to extend shrimp’s shelf life. Real-time monitoring of moisture content, color, and texture during the drying process is important to ensure product quality. In this study, hyperspectral imaging technology was employed to acquire images of 104 shrimp samples at different drying levels. The water distribution and migration were monitored by low field magnetic resonance and the correlation between water distribution and other quality indicators were determined by Pearson correlation analysis. Then, spectra were extracted and competitive adaptive reweighting sampling was used to optimize characteristic variables. The grey-scale co-occurrence matrix and color moments were used to extract the textural and color information from the images. Subsequently, partial least squares regression and least squares support vector machine (LSSVM) models were established based on full-band spectra, characteristic spectra, image information, and fused information. For moisture, the LSSVM model based on full-band spectra performed the best, with residual predictive deviation (RPD) of 2.814. For L*, a*, b*, hardness, and elasticity, the optimal models were established by LSSVM based on fused information, with RPD of 3.292, 2.753, 3.211, 2.807, and 2.842. The study provided an in situ and real-time alternative to monitor quality changes of dried shrimps.