Friction stir welding (FSW) is an effective solid-state joining process that has the potential to overcome common problems correlated with conventional fusion welding processes. FSW is used for the joining of metallic materials, in particular Al alloys (non-heat-treatable and heat-treatable). The heat produced by the friction between the rotating tool and the workpiece material generates a softened region near the FSW tool. Although the heat input plays a crucial role in producing a defect-free weld metal, it is a serious concern in the FSW of work-hardened non-heat-treatable Al alloys. In this group of alloys, the mechanical properties, including hardness, tensile properties, and fatigue life, are adversely affected by the softening effect because of grain growth and reduced dislocation density. Considering this challenge, work-hardened Al alloys have been limited in their industrial use, which includes aerospace, shipbuilding, automotive, and railway industries. The current comprehensive review presents the various approaches of available studies for improving the quality of FSW joints and expanding their use. First, the optimization of welding parameters, including the tool rotational and traverse speeds, tool design, plunge depth, and the tilt angle is discussed. Second, the incorporation of reinforcement particles and then underwater FSW are stated as other effective strategies to strengthen the joint. Finally, some supplementary techniques containing surface modification, bobbin tool FSW, copper backing, and double-sided FSW in relation to strain-hardened Al alloys are considered.