Objective: Breast cancer (BC) is a common malignant tumor in females. The combined assay of multiple molecular markers benefits the diagnosis and prognostic prediction. Human epidermal growth factor receptor 2 (HER2) facilitates the proliferation and differentiation of cancer cells through ligand binding. Ki67 is a tumor proliferation-related gene, whereas GSTP1 is a DNA repair-related gene. This study thus investigated the significance of HER2 and Ki67/GSTP1 gene combined assay in the diagnosis and prognosis of BC. Materials and Methods: A total of 86 breast tumor tissues and adjacent tissues were collected. Gene expression and protein levels of HER2 and Ki67 were quantified by real-time polymerase chain reaction (PCR) and Western blot, respectively. Methylation frequency of GSTP1 was analyzed by methylation-specific PCR. The correlation between HER2 and Ki67/GSTP1 and clinical/pathological features of BC was analyzed. Results: Gene and protein expression levels of HER2 and Ki67 in tumor tissues were increased (p < 0.05 compared with adjacent tissues). Methylation frequency of GSTP1 gene was 37.2%, which was significantly higher in breast tumor tissues than in adjacent tissues (12.79%, p < 0.05). HER2 expression was positively correlated with TNM stage, tumor size, and lymph node metastasis, and negatively correlated with tissue grade and estrogen receptor (ER)/progesterone receptor (PR) expression (p < 0.05). GSTP1 methylation was positively correlated with TNM stage and tumor size, and negatively correlated with ER/PR expression (p < 0.05). Conclusions: HER2, Ki67, and GSTP1 methylation were correlated with clinical and pathological features of BC. The combined assay benefits the early diagnosis and prognostic prediction of cancer.