The hot deformation behavior of high-grade pipeline steels was studied in the strain rate range of 0.001~0.1 s−1 and the temperature range of 1050~1200 °C by using hot compression tests on a Gleeble 3500 thermomechanical simulator. The flow stress increases with the increase in strain rate and the decrease in deformation temperature, and the deformation activation energy is about 358 kJ/mol. The flows stress–strain behavior of the work-hardening and dynamic recovery (DRV) was calculated using the Estrin–Mecking equation, and the kinetics model of the dynamic recrystallization (DRX) was established based on the Avrami equation through characteristic strains. Furthermore, the flow stress–strain behavior of high-grade pipeline steels was predicted by the established model based on the coupling effects of DRV and DRX. The corresponding predicted results are in good agreement with the experimental results according to standard statistical parameters analysis. Finally, the economic strain (ε3) is proposed by the third derivative of the given kinetic model. Based on these calculation results, when the economic strain (ε3) is reached, uniform and refined DRX grains can be obtained, the energy consumption reduced, and the production costs controlled, which is of great significance to actual factory production.