BackgroundIncreasing evidence points to a role for the extra-neuronal nerve growth factor (NGF) in acquired immune responses. However, very little information is available about its role and underlying mechanism in innate immunity. The role of innate immunity in autoimmune diseases is becoming increasingly important. In this study, we explored the contribution of pleiotropic NGF in the innate immune response along with its underlying molecular mechanism with respect to IL-1β secretion.MethodsHuman monocytes, null and NLRP3 deficient THP-1 cell lines were used for this purpose. We determined the effect of NGF on secretion of IL-1β at the protein and mRNA levels. To determine the underlying molecular mechanism, the effect of NGF on NLRP1/NLRP3 inflammasomes and its downstream key protein, activated caspase-1, were evaluated by ELISA, immunoflorescence, flow cytometry, and real-time PCR.ResultsIn human monocytes and null THP-1 cell line, NGF significantly upregulates IL-1β at protein and mRNA levels in a caspase-1 dependent manner through its receptor, TrkA. Furthermore, we observed that NGF induces caspase-1 activation through NLRP1/NLRP3 inflammasomes, and it is dependent on the master transcription factor, NF-κB.ConclusionsTo best of our knowledge, this is the first report shedding light on the mechanistic aspect of a neuroregulatory molecule, NGF, in innate immune response, and thus enriches our understanding regarding its pathogenic role in inflammation. These observations add further evidence in favor of anti-NGF therapy in autoimmune diseases and also unlock a new area of research about the role of NGF in IL-1β mediated diseases.