This paper presents a novel compliant geo-structural systems bio-inspired by awns on grass seeds for increasing anchor capacity while minimizing material usage. A compliant deployable structure is here defined as a system that reacts to global displacements by continued elastic shape change and awns are slender flexible structures rigidly connected to the exterior of an anchor. When the anchor is loaded in tension, the awns react off the soil mass and deploy outwards from the pile shaft, enabling space-saving measures for transportation. This paper creates a structural pushover model to establish awn deformations and stress values, a scale model of the compliant system fabricated using additive manufacturing, geo-plasticity numerical models of soil awn interaction, and a finite element model of an example application. This research elucidates the soil displacement mechanisms around the awns, the structural deformation of individual awns, and the enhancement of overall anchor capacity due to awn deployment.