CIZA J2242.8+5301 ('Sausage') and 1RXS J0603.3+4213 ('Toothbrush') are two lowredshift (z ∼ 0.2), massive (∼ 2 × 10 15 M ), post-core passage merging clusters, which host shock waves traced by diffuse radio emission. To study their star-formation properties, we uniformly survey the 'Sausage' and 'Toothbrush' clusters in broad and narrow band filters and select a sample of 201 and 463 line emitters, down to a rest-frame equivalent width (13Å). We robustly separate between Hα and higher redshift emitters using a combination of optical multi-band (B, g, V, r, i, z) and spectroscopic data. We build Hα luminosity functions for the entire cluster region, near the shock fronts, and away from the shock fronts and find striking differences between the two clusters. In the dynamically younger, 1 Gyr old 'Sausage' cluster we find numerous (59) Hα emitters above a star-formation rate (SFR) of 0.17 M yr −1 surprisingly located in close proximity to the shock fronts, embedded in very hot intra-cluster medium plasma. The SFR density for the cluster population is at least at the level of typical galaxies at z ∼ 2. Down to the same star-formation rate, the possibly dynamically more evolved 'Toothbrush' cluster has only 9 Hα galaxies. The cluster Hα galaxies fall on the SFRstellar mass relation z ∼ 0.2 for the field. However, the 'Sausage' cluster has an Hα emitter density > 20 times that of blank fields. If the shock passes through gas-rich cluster galaxies, the compressed gas could collapse into dense clouds and excite star-formation for a few 100 Myr. This process ultimately leads to a rapid consumption of the molecular gas, accelerating the transformation of gas-rich field spirals into cluster S0s or ellipticals.