a b s t r a c tDespite significant recent interest in the identification of electrically stimulated muscle models, current methods are based on underlying models and identification techniques that make them unsuitable for use with subjects who have incomplete paralysis. One consequence of this is that very few model-based controllers have been used in clinical trials. Motivated by one case where a model-based controller has been applied to the upper limb of stroke patients, and the modelling limitations that were encountered, this paper first undertakes a review of existing modelling techniques with particular emphasis on their limitations. A Hammerstein structure, already known in this area, is then selected, and a suitable identification procedure and set of excitation inputs are developed to address these short-comings. The technique that is proposed to obtain the model parameters from measured data is a combination of two iterative schemes: the first of these has rapid convergence and is based on alternating least squares, and the second is a more complex method to further improve accuracy. Finally, experimental results are used to assess the efficacy of the overall approach.