“…Interestingly, systemic vein chlorosis in this study was only ever observed in response to spotted alfalfa aphid feeding, never in response to spotted clover aphid feeding, suggesting that this symptom may not always be a good indicator of host suitability. Resistance and vein chlorosis symptoms are also not necessarily correlated for Russian wheat aphid, Diuraphis noxia , on wheat (Assad et al , 2004). Further investigations on the differential performance of spotted alfalfa aphid and spotted clover aphid on resistant and susceptible M. truncatula genotypes could also provide valuable insight into the mechanisms used by these aphids to feed successfully on host plants.…”
Aphids are phloem-feeding insects that damage many important crops throughout the world yet, compared to plant-pathogen interactions, little is known about the mechanisms by which plants become resistant to aphids. Medicago truncatula (barrel medic) is widely considered as the pre-eminent model legume for genetic and biological research and in Australia is an important pasture species. Six cultivars of M. truncatula with varying levels of resistance to two pests of pasture and forage legumes, the bluegreen aphid Acyrthosiphon kondoi Shinji and the spotted alfalfa aphid Therioaphis trifolii f. maculata. (Buckton) are investigated. Two resistance phenotypes against T. trifolii f. maculata are described, one of which is particularly effective, killing most aphids within 24 h of infestation. Each resistance phenotype provided a similar but somewhat less effective degree of resistance to the closely-related spotted clover aphid Therioaphis trifolii (Monell). In the case of A. kondoi only one resistance phenotype was observed, which did not vary among different genetic backgrounds. None of the observed resistance against A. kondoi or T. trifolii f. maculata significantly affected the performance of green peach aphid Myzus persicae (Sulzer) or cowpea aphid Aphis craccivora Koch. The existence of multiple aphid resistance mechanisms in similar genetic backgrounds of this model plant provides a unique opportunity to characterize the fundamental basis of plant defence to these serious agricultural pests.
“…Interestingly, systemic vein chlorosis in this study was only ever observed in response to spotted alfalfa aphid feeding, never in response to spotted clover aphid feeding, suggesting that this symptom may not always be a good indicator of host suitability. Resistance and vein chlorosis symptoms are also not necessarily correlated for Russian wheat aphid, Diuraphis noxia , on wheat (Assad et al , 2004). Further investigations on the differential performance of spotted alfalfa aphid and spotted clover aphid on resistant and susceptible M. truncatula genotypes could also provide valuable insight into the mechanisms used by these aphids to feed successfully on host plants.…”
Aphids are phloem-feeding insects that damage many important crops throughout the world yet, compared to plant-pathogen interactions, little is known about the mechanisms by which plants become resistant to aphids. Medicago truncatula (barrel medic) is widely considered as the pre-eminent model legume for genetic and biological research and in Australia is an important pasture species. Six cultivars of M. truncatula with varying levels of resistance to two pests of pasture and forage legumes, the bluegreen aphid Acyrthosiphon kondoi Shinji and the spotted alfalfa aphid Therioaphis trifolii f. maculata. (Buckton) are investigated. Two resistance phenotypes against T. trifolii f. maculata are described, one of which is particularly effective, killing most aphids within 24 h of infestation. Each resistance phenotype provided a similar but somewhat less effective degree of resistance to the closely-related spotted clover aphid Therioaphis trifolii (Monell). In the case of A. kondoi only one resistance phenotype was observed, which did not vary among different genetic backgrounds. None of the observed resistance against A. kondoi or T. trifolii f. maculata significantly affected the performance of green peach aphid Myzus persicae (Sulzer) or cowpea aphid Aphis craccivora Koch. The existence of multiple aphid resistance mechanisms in similar genetic backgrounds of this model plant provides a unique opportunity to characterize the fundamental basis of plant defence to these serious agricultural pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.