Vitamin A bound to retinol binding protein 4 (RBP4) constitutes the major transport mode for retinoids in fasting circulation. Emerging evidence suggests that membrane protein, STRA6 (stimulated by retinoic acid 6), is the RBP4 receptor and vitamin A channel; however, the role of STRA6 in vitamin A homeostasis remains to be defined in vivo. We subjected Stra6-knockout mice to diets sufficient and insufficient for vitamin A and used heterozygous siblings as controls. We determined vitamin A levels of the eyes, brain, and testis, which highly express Stra6, as well as of tissues with low expression, such as lung and fat. We also studied the consequence of STRA6 deficiency on retinoid-dependent processes in tissues. Furthermore, we examined how STRA6 deficiency affected retinoid homeostasis of the aging mouse. The picture that emerged indicates a critical role for STRA6 in the transport of vitamin A across blood-tissue barriers in the eyes, brain, and testis. Concurrently, fat and lung rely on dietary vitamin A. In testis and brain, Stra6 expression was regulated by vitamin A. In controls, this regulation reduced vitamin A consumption when the dietary supply was limited, sequestering it for the eye. Thus, STRA6 is critical for vitamin A homeostasis and the adaption of this process to the fluctuating supply of the vitamin.