The evolution of computer-aided design/computer-aided manufacturing (CAD/CAM) systems has heightened the significance of digital models in dentistry, particularly for fabricating prostheses like inlays, crowns, and bridges. While digital dentistry offers enhanced speed and precision, the initial investment in intraoral scanners may pose a barrier for some clinicians. Extraoral or lab scanners, however, offer a viable alternative, reducing laboratory time and providing accurate prostheses fit, though challenges such as reflective surfaces and availability of scanning sprays persist, impacting scanning quality and operator technique.Optical scanning using laboratory scanners is a routine practice in today's age of digital dentistry. Often these require powder opacification to record fine details. There are numbered studies on the accuracy of scanning sprays.
Materials and methodsTen casts, poured with type 4 dental stone (Elite Rock, Zhermack, Italy) with single implants, were used for the purpose of this study. Each cast was scanned by two different operators, using both mediums. It was scanned using an extraoral scanner (E4, 3Shape, Copenhagen, Denmark). Operator A used easy scan (Alphadent, Korea), followed by zirconia dust (Upcera, Guangdong, China), whereas operator B used zirconia dust first. Digital models within each group were superimposed individually to measure precision.
ResultsEasy scan operator 1 and zirconia dust operator 1 differ by 0.16000 (p = 0.0802). In scenario 2, easy scan operator 2 and zirconia dust operator 2 differ by 0.21900 (p = 0.0212) . Operator type significantly affects performance, emphasizing the need to account for operator variability in relevant contexts. The trueness values obtained for zirconia dust and easy scan among both operators were statistically insignificant.
ConclusionZirconia dust can be reliably used for extraoral scanning of abutments in place of optical scanning sprays.