The study assessed vastus lateralis oxygen desaturation kinetics (SmO2) in 32 male cyclists (16 Seniors, 16 Juniors) during a 30 s sprint, examining effects of age and performance. An incremental test was used to determine ventilatory thresholds (VT1, VT2) and maximal oxygen uptake (VO2kg), followed by a sprint test to evaluate anaerobic performance. Cyclists’ performance phenotype was determined as the ratio of power at VT2 to 5 s peak sprint power. Juniors exhibited sprinter-like traits, excelling in all functional tests except for lactate levels post-sprint. SmO2 data showed no age-related or bilateral differences across participants. The combined mean response time (MRT) revealed stronger bilateral goodness of fit (R2 = 0.64) than individual time delay (TD) and time constant (τ). Higher VO2kg at VT2, peak power, and maximal uptake were linked to longer TD, while shorter TD correlated with higher lactate production and increased fatigue. Bilaterally averaged SmO2 kinetics distinguished between sprint and endurance athletes, indicating the potential to reflect the alactic anaerobic system’s capacity and depletion. Age did not affect desaturation rates, but younger cyclists showed greater response amplitude, attributed to a higher initial baseline rather than maximal desaturation at the end of the exercise.