Abstract. Three-dimensional optical systems are used for calculating many kinetic and kinematic parameters. The obtained data are precise; however, their repeatability is a very important aspect. The aim of this paper is to verify the range of motion repeatability of one healthy subject in the joints of the pelvis, spine and lower limbs based on the coefficient of variation. The participant performed seven exercises, repeated five times: two-leg squat, single-leg squat, forward bending, forward-step motion, step onto the stair, hip extension in a standing position and tip-toe extension while standing. Motion was recorded using Vicon motion capture system consisting of eight NIR cameras. The participant had 39 markers attached to her body according to the Plug-in Gait model. The coefficient of variation was calculated in three dimensions (X, Y and Z). The greatest repeatability, pursuant to the coefficient, was observed during the two-leg squat and forward bending in the sagittal plane (X coordinate). It was also high during the singleleg squat. The lowest repeatability was observed during the tip-toe extension while standing and the hip extension in a standing position. During the step onto the stair and the forward-step motion, a higher repeatability of measurement occurred in the open kinematic chain than in the closed chain; in the hip extension the reverse occurred. Repeatability of a range of motion is different in two types of kinematic chain and in 7 exercises. Exercises such as tip-toe extension and hip extension, which require a greater ability to balance, indicated more variability in movement.