Glucocorticoids are used to mature the fetal lung at times of threatened premature delivery. These drugs modify leukocyte profiles when administered in adulthood, but their effects on the mature host defence system following administration during the perinatal period are incompletely understood. In this study, the long-term effects of perinatal dexamethasone exposure on rodent host defence cells in the pulmonary airspaces, the perivascular compartment of the lung, and the blood were investigated. Rats were treated prenatally (gestational days 16-19) or neonatally (postnatal days 1-7) by inclusion of dexamethasone in the mothers' drinking water (1 microg/ml). The pups were then allowed to develop to adulthood (P60-80), at which time respiratory tissues were collected for light and electron microscopy and bronchoalveolar lavage (BAL), and blood for cell count and fluorescent activated cell-sorting (FACS) analysis. Prenatal treatment had no effect on any parameter examined. Following neonatal dexamethasone exposure, light microscopy of the lung tissue revealed a significant reduction in the number of cells in the perivascular space in both the central and the peripheral regions of the adult lung, but no differences in the number of cells in the airspaces. Neonatal dexamethasone exposure was also characterized by a significant reduction in the total number of white cells in the peripheral blood in adulthood and in particular, the number of lymphocytes relative to neutrophils was significantly reduced at maturity in these animals. The results show that neonatal, but not prenatal, dexamethasone exposure significantly alters the distribution of host defence cells in the blood and lung at maturity compared with control animals. The early neonatal period is characterized by the stress hyporesponsive period in the rat, when endogenous glucocorticoid levels are very low. Therefore, exogenous glucocorticoids administered during this time are likely to have marked "programming" effects on glucocorticoid-sensitive tissues.