In this study, we determined the accuracy and practicality of using optical microscopy (OM) and laser diffraction (LD) to characterize hydrogel particle morphology, size, and swelling capacity (Q). Inverse-suspension-polymerized polyacrylamide particles were used as a model system. OM and LD showed that the average particle diameter varied with the mixing speed during synthesis for the dry (10-120 lm) and hydrated (34-240 lm) particles. The LD volume and number mean diameters showed that a few large particles were responsible for the majority of the water absorption. Excess water present in the gravimetric swelling measurements led to larger Qs (8.2 6 0.37 g/g), whereas the volumetric measurements with OM and LD resulted in reduced capacities (6.5 6 3.8 and 5.7 6 3.9 g/g, respectively). Results from the individual particle swelling measurements with OM (5.2 6 0.66 g/g) statistically confirmed that the volumetric methods resulted in a reduced and more accurate measurement of the Q than the gravimetric method. V C 2017Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46055.