Background
The endothelial angiopoietin/Tie2 system is an important regulator of endothelial permeability and targeting Tie2 reduces hemorrhagic shock-induced organ edema in males. However, sexual dimorphism of the endothelium has not been taken into account. This study investigated whether there are sex-related differences in the endothelial angiopoietin/Tie2 system and edema formation.
Methods
Adult male and female heterozygous Tie2 knockout mice (Tie2+/−) and wild-type controls (Tie2+/+) were included (n = 9 per group). Renal and pulmonary injury were determined by wet/dry weight ratio and H&E staining of tissue sections. Protein levels were studied in plasma by ELISA and pulmonary and renal mRNA expression levels by RT-qPCR.
Results
In Tie2+/+ mice, females had higher circulating angiopoietin-2 (138%, p<0.05) compared to males. Gene expression of angiopoietin-1 (204%, p<0.01), angiopoietin-2 (542%, p<0.001) were higher in females compared to males in kidneys, but not in lungs. Gene expression of Tie2, Tie1 and VE-PTP were similar between males and females in both organs. Renal and pulmonary wet/dry weight ratio did not differ between Tie2+/+ females and males. Tie2+/+ females had lower circulating NGAL (41%, p<0.01) compared to males, whereas renal NGAL and KIM1 gene expression was unaffected.
Interestingly, male Tie2+/- mice had 28% higher renal wet/dry weight ratio (p<0.05) compared to Tie2+/+ males, which was not observed in females nor in lungs. Partial deletion of Tie2 did not affect circulating angiopoietin-1 or angiopoietin-2, but soluble Tie2 was 44% and 53% lower in males and females, respectively, compared to Tie2+/+ mice of the same sex. Renal and pulmonary gene expression of angiopoietin-1, angiopoietin-2, estrogen receptors and other endothelial barrier regulators was comparable between Tie2+/- and Tie2+/+ mice in both sexes.
Conclusion
Female sex seems to protect against renal, but not pulmonary edema in heterozygous Tie2 knock-out mice. This could not be explained by sex dimorphism in the endothelial angiopoietin/Tie2 system.