Dengue, a viral infection transmitted between people by mosquitoes, is one of the most rapidly spreading diseases in the world. Here, we report the analyses covering 11 y (2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015) from the city of Guangzhou in southern China. Using the first 8 y of data to develop an ecologically based model for the dengue system, we reliably predict the following 3 y of dengue dynamics-years with exceptionally extensive dengue outbreaks. We demonstrate that climate conditions, through the effects of rainfall and temperature on mosquito abundance and dengue transmission rate, play key roles in explaining the temporal dynamics of dengue incidence in the human population. Our study thus contributes to a better understanding of dengue dynamics and provides a predictive tool for preventive dengue reduction strategies.D engue is one of the most rapidly spreading diseases in the world (1), including within the Guangdong province of southern China (2). During the last 50 y, the incidence of dengue has increased 30-fold with increasing geographic expansion to new countries (1). In 2010, an estimated 390 million dengue infections occurred, of which around 96 million showed symptoms (3). Dengue outbreaks in China were previously thought to be imported and initiated by people traveling to China from dengue-endemic areas elsewhere (4); however, recent studies suggest that dengue may now be endemic to China as well (2). The epidemiological triangle of both dengue fever and dengue hemorrhagic fever, which is the more serious form of dengue, includes hosts (humans), pathogens (one or more of five dengue virus serotypes) (5), and mosquito vectors (Aedes albopictus and Aedes aegypti) with their ecological interactions (6). The dengue outbreaks are qualitatively known to be strongly influenced by temperature (7), humidity, rainfall, and socioeconomic factors like urbanization (8). However, a full understanding of the quantitative nature of such effects is largely lacking. With this paper, we provide such a quantitative understanding of dengue dynamics.In 2014, an extensive dengue outbreak hit China, with 47,127 dengue cases diagnosed, a new record since 1986 (9). Since the 1990s, dengue epidemics have gradually spread from Guangdong, Hainan, and Guangxi provinces (9). We present here a time series analysis of dengue dynamics, using dengue surveillance data for the years 2005−2015 from Guangzhou, the largest city in Guangdong and the city with the most dengue cases in China. We split the main analysis by using the first 8 y to develop a model, and the three remaining years to test that model, as these latter years encompass exceptionally extensive dengue outbreaks.Monthly human dengue incidence data (number of diagnosed cases) were obtained from the China National Notifiable Disease Surveillance System (10) (Fig. 1). Monthly surveillance data of A. albopictus density, the only dengue vector species in Guangzhou, were obtained from local Centers for Disease Control and Prevention (11) (Metho...