In this paper, we explored the type of mathematical connections Grade 11 learners make when solving two-dimensional (2D) trigonometric problems in an Activity-Based Learning (ABL) environment. We followed a qualitative case study design within an interpretive paradigm. Convenience sampling was used to select a whole class of 45 Grade 11 learners from one of the public non-fee-paying secondary schools in Capricorn District, Limpopo Province of South Africa. Group work presentations and classroom interactions were used to collect data. Data were analyzed using deductive thematic analysis guided by the mathematical connections’ framework. The findings indicated that learners managed to make procedural, meaning, reversibility, different representations, feature, and inclusion part whole as well as integrated connections as they worked on 2D trigonometric problems in an ABL environment. We established that learners did not make generalization part-whole connections. In addition, we found that some learners lacked mathematical connections skills and failed to solve the problems. Engaging learners in an ABL environment provided a fine-grained approach that allowed them to make mathematical connections. We, therefore, recommend that teachers should create an ABL environment to enable learners to make different types of mathematics connections during the teaching and learning of trigonometric concepts.