The present study investigates the properties and microstructure evolution of MA 6000, a nickel-based alloy produced by mechanical alloying and spark plasma sintering (SPS), a powder processing technique in metallurgy. This study aims to explore the potential of MA 6000 as a high-temperature material for industrial applications. Modified MA 6000 samples of different powder sizes were sintered in a high-vacuum environment at temperatures ranging from 800 to 1100°C. At 800°C, the cohesion between powder particles was not significant, resulting in low-density samples. However, at 1000°C, the samples consisted of many fully sintered regions related to finer powder particles, while no specific morphology was observed at 1050°C. The image quality and inverse pole figure (IQ-IPF) map indicated that the grains were distributed randomly in all sintered samples, and the average distribution of grain size of samples sintered at 1050°C was larger than that of those sintered at 1000°C.