Gravimetric uptake measurements were performed with cyclohexane for different Silicalite-1 crystals sizes. It was observed that the apparent diffusion coefficients vary with crystal size, confirming the existence of a surface resistance. Considering that surface and the intracrystalline characteristic diffusion times are additives, it was possible to dissociate the two resistances.Surface mass transfer coefficient was found to be in the same order of magnitude for the different samples and activated with temperature. The contribution of surface resistance to mass transfer limitation is lower at high temperatures and for the bigger crystals. Surface resistance is far from being negligible for the smaller crystals: for crystals of 2 µm, surface resistance represents more than 60% of the total mass transfer resistance at 398 K. And crystals of that size (in the order of 2 µm) are usually used industrially, in order to minimize mass transfer resistance.The surface of one of our sample was purified by etching with a solution of hydrogen fluoride, without any enhancement of the adsorption kinetic. Surface resistance may not be located at the extreme surface of the crystals but in a layer of non negligible thickness of distorted crystal structure around the crystals.