Determining the pore structure characteristics and influencing factors of continental shale reservoir in the oil generation stage is of great significance for evaluating the shale oil reservoir space and analyzing shale oil enrichment mechanism. In this paper, shale from the first member of the Upper Cretaceous Qingshankou Formation (K2qn1) in the Songliao Basin was selected. X-ray diffraction (XRD), Rock-Eval pyrolysis, total organic carbon content (TOC), scanning electron microscopy (SEM), nitrogen gas adsorption (N2GA), and high-pressure mercury injection (HPMI) were used to clarify the composition characteristics of inorganic minerals and organic matter and determine the influencing factors of pore development in the K2qn1 shale. The results show that intergranular pores related to clay minerals and quartz, intragranular dissolution pores related to feldspar, and other mineral intragranular pores are developed. The organic matter pore is less developed, mainly composed of intragranular pores and crack pores of organic matter. Mesopores related to clay minerals are widely developed, rigid quartz particles can protect and support mesopores and macropores, and carbonate cementation can inhibit pore development. Although the TOC contents of shale are commonly less than 2.5%, it has a good positive correlation with porosity; TOC is greater than 2.5%, and the increase of residual oil fills part of the pores, leading to a decrease in porosity with the increase of TOC. Three types (types I, II, and III) of the reservoir space were classified by the combined pore size distribution diagram of N2GA and HPMI. By comparing the characteristics of pore structure parameters, it is found that Type I reservoir space is favorable for shale oil enrichment. It provides scientific guidance for shale oil exploration in the Songliao Basin.