Normal aging begins after 60 years of age. According to Harman, the accumulation of free radicals, which results from weakening of repair and protective mechanisms, takes place in the aging brain. It is believed that especially in the population of the most elderly there is increased incidence of both dementia and depression. The causes of these central nervous system disorders in the aging human body are changes at the molecular level, such as changes in the biochemical parameters, the accumulation of mutations in nuclear and mitochondrial DNA, and epigenetic changes. Biomarkers associated with aging of the brain include accumulated deposits of β-amyloid (Aβ), disturbed cholesterol homeostasis, altered neuroimaging parameters, and impaired glucose metabolism. Genetic factors are also responsible for normal aging, for example, SIRT1, AKT1, and CDKN1A, and among them the longevity genes, such as FOXO3A and CETP. Dementia as well as cognitive decline may be modified by poly-T variants of TOMM40 and APOE alleles via influencing the level of apolipoprotein E (apoE) in the brain and in the plasma as well as by its ability of Aβ clearance. Identifying the molecular factors associated with aging and dementia may help introduce new approaches to preventing geriatric disorders, including depression and dementia.