LaCoO3nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3nanoparticles were studied in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Pellets were manufactured in order to test the gas sensing properties of LaCoO3powders in carbon monoxide (CO) and propane (C3H8) atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3pellets presented a high sensitivity in both CO and C3H8at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.