ABSTRACTTo examine the role of the four putative DEAD-box RNA helicase genes ofListeria monocytogenesEGD-e in stress tolerance, the growth of the Δlmo0866, Δlmo1246, Δlmo1450, and Δlmo1722deletion mutant strains at 42.5°C, at pH 5.6 or pH 9.4, in 6% NaCl, in 3.5% ethanol, and in 5 mM H2O2was studied. Restricted growth of the Δlmo0866deletion mutant strain in 3.5% ethanol suggests that Lmo0866 contributes to ethanol stress tolerance ofL. monocytogenesEGD-e. The Δlmo1450mutant strain showed negligible growth at 42.5°C, at pH 9.4, and in 5 mM H2O2and a lower maximum growth temperature than the wild-type EGD-e, suggesting that Lmo1450 is involved in the tolerance ofL. monocytogenesEGD-e to heat, alkali, and oxidative stresses. The altered stress tolerance of the Δlmo0866and Δlmo1450deletion mutant strains did not correlate with changes in relative expression levels oflmo0866andlmo1450genes under corresponding stresses, suggesting that Lmo0866- and Lmo1450-dependent tolerance to heat, alkali, ethanol, or oxidative stress is not regulated at the transcriptional level. Growth of the Δlmo1246and Δlmo1722deletion mutant strains did not differ from that of the wild-type EGD-e under any of the conditions tested, suggesting that Lmo1246 and Lmo1722 have no roles in the growth ofL. monocytogenesEGD-e under heat, pH, osmotic, ethanol, or oxidative stress. This study shows that the putative DEAD-box RNA helicase geneslmo0866andlmo1450play important roles in tolerance ofL. monocytogenesEGD-e to ethanol, heat, alkali, and oxidative stresses.