To better understand the two-way coupling between turbulence and chemistry, the changes in turbulence characteristics through a premixed flame are investigated. Specifically, this study focuses on vorticity, ω, which is characteristic of the smallest length and time scales of turbulence, analyzing its behavior within and across high Karlovitz number (Ka) premixed flames. This is accomplished through a series of direct numerical simulations (DNS) of premixed n-heptane/air flames, modeled with a 35-species finite-rate chemical mechanism, whose conditions span a wide range of unburnt Karlovitz numbers and flame density ratios. The behavior of the terms in the enstrophy, ω2 = ω ⋅ ω, transport equation is analyzed, and a scaling is proposed for each term. The resulting normalized enstrophy transport equation involves only a small set of parameters. Specifically, the theoretical analysis and DNS results support that, at high Karlovitz number, enstrophy transport obtains a balance of the viscous dissipation and production/vortex stretching terms. It is shown that, as a result, vorticity scales in the same manner as in homogeneous, isotropic turbulence within and across the flame, namely, scaling with the inverse of the Kolmogorov time scale, τη. As τη is a function only of the viscosity and dissipation rate, this work supports the validity of Kolmogorov’s first similarity hypothesis in premixed turbulent flames for sufficiently high Ka numbers. Results are unaffected by the transport model, chemical model, turbulent Reynolds number, and finally the physical configuration.