Evaluation of injuries from inhalation exposure to toxic fuel requires detailed knowledge of inhaled aerosol transport and deposition in human airways. Focusing on highly toxic, easily volatized JP-8 fuel droplets, the three-dimensional airflow, temperature distributions, and fluid-particle thermodynamics, i.e., droplet motion as well as evaporation, are simulated and analyzed for laminar as well as locally turbulent flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Lagrange approach for the fluid-particle thermodynamics is employed with: (1) a low Reynolds number k-ω model for laminar-to-turbulent airflow, and (2) a stochastic model for random fluctuations in the droplet trajectories with droplet evaporation. Presently, the respiratory system consists of two major segments of a simplified human cast replica, i.e., a representative oral airway from mouth to trachea (Generation 0) and a symmetric four-generation upper bronchial tree model (G0 to G3). Experimentally validated computational fluid-particle thermodynamics results show that evaporation of JP-8 fuel droplets is greatly affecting deposition in the human airway. Specifically, droplet deposition fractions due to vaporization Address correspondence to Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA. E-mail: ck@eos.ncsu.edu decrease with increasing ambient temperatures and decreasing inspiratory flow rates. It is also demonstrated that assuming idealized velocity profiles and particle distributions in or after the trachea may greatly overpredict particle deposition efficiencies in the upper bronchial tree.