Objective
We developed an actuator-driven pulsed water jet (ADPJ) device to achieve maximal lesion dissection with minimal risk of normal structural damage. Despite the unique dissection characteristics, there is a risk of dissemination of tissue dispersion; however, there is no established method to quantify the dispersion. Hence, this study aimed to assess the factors associated with dispersion and propose a simple experimental method using spectrophotometry to evaluate the degree of dispersion in a wet field.
Results
Methylene blue-stained brain phantom gelatin was immersed in a chamber with distilled water solution and dissected with an ADPJ. The dispersed gelatin solution was stirred and warmed to dissolve. The absorbance of the solution was measured spectrophotometrically. First, a reference standard curve was constructed to confirm the relationship between the absorbance and the amount of the dispersed gelatin. A clear proportional correlation was observed, which indicated that absorbance measurements can help evaluate the amount of dispersion. Using this method, we revealed that a high dissection force, insufficient suction, and inappropriate long distance between the nozzle tip and the target were associated with increased dispersion. This method might constitute a versatile and reliable approach to evaluate dispersion and aid in the development of surgical devices.