Abstract:For a language with no transcribed speech available (the zero-resource scenario), conventional acoustic modeling algorithms are not applicable. Recently, zero-resource acoustic modeling has gained much interest. One research problem is unsupervised subword modeling (USM), i.e., learning a feature representation that can distinguish subword units and is robust to speaker variation. Previous studies showed that self-supervised learning (SSL) has the potential to separate speaker and phonetic information in speec… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.