2006
DOI: 10.1002/tea.20175
|View full text |Cite
|
Sign up to set email alerts
|

The effects of a history‐based instructional material on the students' understanding of field lines

Abstract: Many students in physics courses fail to achieve a desired conceptual change because they assign an incorrect ontology to the to-be-learned concept. This situation has been detected in previous research for the case of field lines: many college students assign material properties to the lines and describe them, for example, as tubes that contain or transport charges. The historical evolution of this concept shows that early scientists like Faraday assigned material properties to these lines in some occasions. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
15
0
19

Year Published

2007
2007
2022
2022

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 30 publications
(35 citation statements)
references
References 32 publications
1
15
0
19
Order By: Relevance
“…There exists a considerable amount of research on student difficulties with the basic concepts in the domain of electricity and magnetism [1][2][3][4][5][6][7][8][9][10][11], but relatively few studies focus on the difficulties that students face while tackling the topic of electromagnetic induction (EMI) [12][13][14][15][16][17]. Yet, EMI might be the most difficult topic in the domain of electricity and magnetism at the introductory level, as some studies suggest [2], at least of those covered by the widely used Conceptual Survey in Electricity and Magnetism (CSEM) [1].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…There exists a considerable amount of research on student difficulties with the basic concepts in the domain of electricity and magnetism [1][2][3][4][5][6][7][8][9][10][11], but relatively few studies focus on the difficulties that students face while tackling the topic of electromagnetic induction (EMI) [12][13][14][15][16][17]. Yet, EMI might be the most difficult topic in the domain of electricity and magnetism at the introductory level, as some studies suggest [2], at least of those covered by the widely used Conceptual Survey in Electricity and Magnetism (CSEM) [1].…”
Section: Introductionmentioning
confidence: 99%
“…Saareleinen, Laaksonen, and Hirvonen [3] found many student difficulties with the concepts of electric and magnetic field and suggested that students' poor understanding of electric and magnetic fields as vector fields may explain students' difficulties in shifting from the Coulombian conceptual profile (relying primarily on the concept of force) to a Maxwellian one (using primarily the field concept). These difficulties will also be reflected in students' poor understanding of the concept of magnetic flux, which in addition to difficulties with the concept of field, involves difficulties with understanding of field lines [4,5] as well as requiring assigning a vector to the surface [3]. Because of the difficulties with the concept of magnetic flux, as well as the rate of change concept, students often use Faraday's law without sufficient understanding [12,16].…”
Section: Introductionmentioning
confidence: 99%
“…It was found that instructional materials facilitate learning of abstract concepts by helping students to concretize ideas and also stimulate their imagination. Many educators agree that instructional materials bring about improvement in the teaching/learning process as well as permit teachers and students to interact as human beings in a climate where people control their environment for their own best purposes [14]. There is strong evidence that the choice of instructional materials has large effects on student learning that rival in size those that are associated with differences in teacher effectiveness [6].…”
Section: Students Learningmentioning
confidence: 99%
“…Uma discussão interessante dessa proposição e de como usá-la didaticamente em salas de aula de física encontra-se em Freire et al (2004Freire et al ( ). 1994AIKENHEAD, 2003;ROBINSON, 1969;LEDER-MAN, 2000;CARVALHO;VANNUCCHI, 2000;DEDES;RAVANIS, 2009;HAZAN, 2000HAZAN, , 2001HEERING, 2000;HOSSON;KAMINSKI, 2007;KLOPFER;COOLEY, 1963;NOTT, 1994;OGUNNIYI, 1987;POCOVÍ, 2007;SEKER;WELCH, 2006;SOLBES;TRAVER, 2003;SEROGLOU;KOU-MARAS, 2001). Nessa mesma literatura, pode se encontrar várias formas de implementar esse tipo de abordagem, seja em relação aos objetivos de ensino (uso da história da ciência com vistas a alcançar: aprendizagem conceitual, natureza da ciência, atitudes em direção à ciência, argumentação, metacognição); seja em relação às estratégias de ensino (uso de história da ciência de forma: integrada com o assunto da física, integrada com outra estratégia de ensino, não-integrada); ou seja ainda em relação ao uso dos materiais didáticos (narrativas históricas, biografias, réplicas de experimentos históricos, problemas historicamente contextualizados, estórias de vida de cientistas) (TEIXEIRA et al, 2009).…”
Section: Implicações Para O Ensino Da Guunclassified
“…Assume-se aqui, portanto, que é possível propor um número de características atualmente pouco ou não controversas sobre a natureza da ciência em acordo com uma visão pós-positivista da ciência, que passou a tomar corpo a partir da década de sessenta (ver LAUDAN, 2003;MCEVOY, 2007;ROSA, 2006). (TEIXEIRA et al, 2009), entretanto há relatos da ocorrência de efeitos positivos desse uso (GALILI; HAZAN, 2000;POCOVÍ, 2007;OGUNNIYI, 1987;HOS-SON;KAMINSKI, 2007;DEDES;RAVANIS, 2009). Assumindo essa possibilidade, pode-se afirmar que a discussão histórica sobre a dificuldade de Newton na elaboração da sua dinâmica orbital antes de ter devidamente compreendido os conceitos de inércia e de força centrípeta remete à importância pedagógica para o entendimento destes conceitos por parte dos graduandos com vistas a uma melhor compreensão da GU de Newton.…”
unclassified