Semiochemicals such as sex pheromones and plant volatiles are crucial components of insect mating systems and host plant localization. In the olfactory signal transduction pathway, odorant-binding proteins (OBPs) are important elements that function in the first step of the pathway by carrying hydrophobic semiochemicals across the sensillum lymph to the olfactory receptors (ORs). In this study, we examined the binding affinities of semiochemicals to AlinOBP10, a putative OBP from the alfalfa plant bug, Adelphocoris lineolatus, that we demonstrate is expressed mainly in sensory organs. We then characterized the biological activities of the high affinity semiochemicals by measuring their electrophysiological activities in antennae and behavioral responses in the plant bug. AlinOBP10 displayed weak binding affinities to two major putative pheromone components, hexyl butyrate and (E)-2-hexenyl butyrate. In contrast, AlinOBP10 exhibited higher binding affinities to six host plant volatiles, namely myrcene, β-pinene, β-ionone, 3-hexanone, (E)-2-hexenal, and 1-hexanol. The biological activities of these six putative ligands were further studied in electroantennogram recordings and Y-tube olfactometer trials. The three compounds, (E)-2-hexenal, 1-hexanol, and 3-hexanone elicited strong electrophysiological responses, but elicited distinct behaviors. While 3-hexanone was attractive to female adults, (E)-2-hexenal and 1-hexanol were significant repellents. Although a weak electrophysiological response was elicited with β-pinene, it was a strong repellent. These results demonstrate that AlinOBP10 can interact with attractants, as well as repellents, with some specificity toward plant volatiles over sex pheromones.