This version is available at https://strathprints.strath.ac.uk/50808/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractThe Hull Cell was used to investigate the impact of current density j on the morphology and uniformity of zinc electrodeposited from a 2.5 mol dm −3 Zn 2+ solution in 1.5 mol dmmethanesulfonic acid at 40°C onto carbon-composite surfaces. The range of the applied deposition current density used was between 1 mA cm −2 and 100 mA cm −2 . Good, robust deposits were obtained when j ≥ 10 mA cm _2 whereas at j's lower than this, patchy films formed due to the competing hydrogen evolution reaction (HER) on the bare carboncomposite surface. An understanding of these effects and its application in the redox flow battery enabled both the coulombic and cell potential efficiencies to be maintained at relatively high values, 90% and 69% respectively, indicating a successful inhibition of the HER on the fully formed Zn layer. Flow velocity at the low Reynolds number in the cell (Re <200) had little impact on the electrochemical cell performance. Depletion of the cerium species became an issue for long charge times.