This study examines the properties of the timer that regulates the onset of gastrulation in the Xenopus embryo. Pre-gastrulation embryos were exposed to aphidicolin, vinblastine, 6-dimethylaminopurine (6-DMAP) or urethane. Embryos exposed to aphidicolin or vinblastine for 0.5-2 h before the presumptive onset of gastrulation, began gastrulation at the same time as control embryos. However, those exposed to 6-DMAP or urethane commenced gastrulation significantly later than controls. In 6-DMAP- and urethane-treated embryos, the onset of gastrulation was retarded by approximately 25% and 120%, respectively. 6-DMAP and urethane, but not vinblastine, also lowered the rate of nuclear doubling by 30% and 120%, respectively, in late-blastula to early-gastrula embryos. 6-DMAP and urethane also lowered the rate of cleavage and cleavage-relevant cytoplasmic cycling by 30% and 80%, respectively, in cleavage-stage embryos. We propose that cytoplasmic activities that can be retarded by 6-DMAP and urethane, but not aphidicolin or vinblastine, may be responsible for regulating the onset of gastrulation in Xenopus embryos.