Purpose: Exercise-induced hypoalgesia (EIH) is the short-term reduction of pain sensitivity after a single bout of exercise. Descending pain inhibition has been proposed to at least partly underlie EIH. Cognitive inhibition is the ability to inhibit a pre-potent response and has in turn been associated with descending pain inhibition, as indexed by conditioned pain modulation. Therefore, we hypothesized that cognitive inhibition is associated with higher EIH. Methods: In this cross-sectional study, 37 pain-free participants (16 male, age 27.75 ± 9.91) completed a stop-signal task assessing cognitive inhibition ability and a control condition in the first session. In the second session, pre-post-test design EIH was assessed by means of aerobic bicycling (15 min., 75% VO 2 max) and isometric knee extension (90 sec, 30% MVC). EIH was assessed with pressure pain thresholds (PPT) and temporal summation of pain (TSP), each at the hand and at the leg. Correlational analyses quantified the associations between cognitive inhibition and EIH change scores. Results: Better cognitive inhibition correlated with EIH change scores in PPTs after aerobic bicycling at the hand (r = −0.35, 95% CI: −0.57; −0.08, p =0.021), but not at the leg (rho = −0.10, 95% CI: −0.36; 0.18, p = 0.277). No correlations between cognitive inhibition and change in PPTs after isometric knee extension at the hand (rho = −0.03, 95% CI: −0.30; 0.25, p = 0.857) nor at the leg (rho = −0.03, 95% CI: −0.25; 0.30, p = 0.857) were observed. There were no EIH effects after isometric exercise and, generally, no effects of exercise on TSP. Conclusion: This study provides preliminary evidence for the notion that cognitive inhibition might play a supportive role in EIH. Although these results are clearly in need of replication, they accord well with previously reported associations between cognitive inhibition, experimental pain and descending pain inhibition.