Modulation of PMN Ca2+ entry by means of selective SOCE channel inhibition attenuates PMN inflammatory responses in vitro. In vivo, SOCE channel blockade attenuates trauma and hemorrhagic shock-induced PMN priming and lung injury without gross evidence of hemodynamic side effects. The relative specificity of SOCE channel blockade for "nonexcitable" cells such as PMNs may make it a valuable form of chemoprophylaxis for the inflammatory consequences of hemorrhagic shock in trauma patients.