Temperature influences almost all life-history traits. For a period of 3 mo, we placed four groups of snakes under four contrasted thermal treatments: (1) a natural regime (NR), based on daily variations (24-h cycle); (2) an accelerated regime (AR), where the thermoperiod fluctuated rapidly (12-h cycle); (3) a slow regime (SR; 48-h cycle); and (4) a cool stable regime (ZR; no fluctuation). The mean temperature, set at 23°C, was identical for the four groups. For the first three groups (NR, AR, SR), ambient temperature fluctuated between 18°C and 28°C. Relative humidity and photoperiod were constant. We recorded feeding success, digestion efficiency, growth rate, activity, and ecdysis events. Differences between groups were expected because of varied exposure to the optimal temperatures, most notably in the ZR group, where the preferred body temperature for digestion (approximately 30°C) would not be reached. Surprisingly, there was no significant effect of the experimental treatment on feeding rate, digestion, body mass increase, and growth rate. Our results do not conform to the paradigm stipulating that maximal body temperature selected by ectotherms necessarily corresponds to the most efficient for resource assimilation and that temperature fluctuations are essential. We propose that increasing the digestive tract's performance through body-temperature elevation trades off against elevated (parasite) energy expenditure from the rest of the body. The main advantage of high body temperatures would be to reduce the amount of time necessary to assimilate prey rather than to improve the net mass gain during digestion.