The aim of this study was to investigate the effect of temperature-humidity index (THI) level on productive parameters, welfare, and immunity in Japanese quails. One hundred and eighty (180) birds of Japanese quail, 14 weeks old, were used. Birds were divided randomly into three equal groups, control (at low THI, less than 70), H1 (at moderate THI, 70-75), and H2 (at high THI, 76-80). Birds in the control group had higher body weight (281.2 g, p = 0.001), egg mass (745 g, p = 0.001), fertility (85.4 %, p = 0.039), hatchability (80.4 %, p = 0.001), and immune response titer to Newcastle disease virus (p = 0.031), compared with H2 group. Furthermore, the thermoneutral group had higher internal egg quality score [albumen height (5.14 mm, p = 0.001), yolk height (10.88 mm, p = 0.015), yolk index (42.32 %, p = 0.039), and Haugh unit (92.67, p = 0.001)]. Nevertheless, there were no significant differences in fertility percentage, immune response, and corticosterone concentration between control and H1 group. Birds in the H2 group had the lowest total leucocytic count and lymphocyte percentage (p = 0.001 and 0.020, respectively) but the highest H/L ratio (0.83, p = 0.001). Corticosterone concentration was lower in control and H1 groups (5.49 and 6.41 ng/mL, respectively, p = 0.024) than that in H2 group. Japanese quail exposed to heat stress revealed drop in production and immunological parameters, as well as a detrimental effects on welfare. Thus, practical approaches might be used to reduce the detrimental effects of greater THI level.