A new family of coating systems provides self-decontamination against dust and biological pathogens for future space exploration.Dust contamination is a serious problem for equipment and vehicles for space exploration. For example, the Moon's dust (lunar regolith) is chemically composed of several elements and compounds, and lunar 'weathering' has left the soil with a relatively fine texture compared to the size distribution of terrestrial dust particles. Previous NASA investigations indicated a lunar-regolith deposition rate of approximately 0.3% coverage per day, although this will vary both geographically and as a function of time. In addition, the Moon's surface is electrostatically charged by its interaction with the local plasma environment and solar UV-and x-ray-induced photoemission of electrons. The lunar thermal environment poses unique challenges to coatings since it is characterized by large temperature variations, long hot and cold soak times, and reduced heat-rejection capability caused by the presence of regolith. Dust gathers on photonic sensors, inhibiting motion and data gathering. Devices that require transparency to light for maximum efficiency (such as solar photovoltaic power systems, video cameras, and optical or IR detectors) also suffer from dust accumulation (see Figure 1). Some scientists have even suggested another potential hazard, that equipment might inadvertently capture extraterrestrial bacteria or spores, possibly leading to catastrophic contamination of human habitats.The Apollo astronauts noted that their extravehicularmobility suits were worn through the outer layer. Gauge dials were so abraded during the Apollo 16 mission that they were unreadable. The sun shade on Harrison Schmitt's face plate was so scratched that he could not see in certain directions. NASA strongly believes that these abrasion problems must be solved, especially for very light-transmission-sensitive photonic lenses and coatings. Dust contaminant particles can absorb or scatter light either out of or into certain pixels, thus giving rise to dark and bright artifacts, respectively.Only very localized and weak magnetic fields exist on the lunar surface, leaving it essentially directly exposed to the impact
Figure 1. Examples of (left) a lunar-dust contaminant particle, and contamination-critical surfaces including (middle) extravehicularactivity suits and (right) solar panels attached to NASA's Spirit rover. 1, 2of solar UV and x-rays, solar-wind plasma, and energetic particles. The lack of an atmosphere results in positive (negative) charging of the environment in sunlight (shadow) regions. This leads to potentials that can vary over orders of magnitude in response to changing solar illumination and plasma conditions. At the macroscale, contaminant adhesion caused by surface (van der Waals) forces are very small and can be easily perturbed by other external forces. However, on nanoscales van der Waals forces can be significant. In general, ionizing radiation does not affect these intermolecular forces unle...