This study investigated the effects of different adhesives, phenol formaldehyde (PF) and melamine urea formaldehyde (MUF), on the mechanical and fire properties of flame-retardant laminated bamboo lumber (LBL). The results demonstrated that the flame-retardant treatment using phosphorus–nitrogen–boron compounds endowed the LBL with excellent flame retardancy and smoke suppression properties, even though the bending strength and bond shear strength were slightly reduced. The PF-glued LBL exhibited superior mechanical and shear properties to the MUF-glued ones, primarily due to its higher processing temperature and deeper adhesive penetration. In addition, the MUF-glued flame-retardant LBL displayed better heat release reduction and smoke suppression properties than the PF-glued LBL, which resulted from the synergistic flame retardancy between the melamine element in MUF and the applied flame retardant. The analysis of the influence of adhesive type on the mechanical and fire properties of flame-retardant LBL holds significant importance for the future design and production of high-performance LBL material.