Biochars have received increasing attention in recent years because of their significant properties such as carbon sequestration, soil fertility, and contaminant immobilization. In this work, the adsorptive removal of paraquat (1,1 0 -dimethyl-4,4 0 -dipyridinium chloride, one of the most widely used herbicides) from aqueous solution onto the swine-manure-derived biochar has been studied at 25°C in a batch adsorption system. The adsorption rate has been investigated under the controlled process parameters including initial pH (i.e., 4.5, 6.0, 7.5, and 9.0), paraquat concentration (i.e., 0.5, 1.0, 2.0, 4.0, and 6.0 mg/L), and biochar dosage (i.e., 0.10, 0.15, 0.20, 0.25, and 0.30 g/L). Based on the adsorption affinity between cationic paraquat and carbon-like adsorbent, a pseudo-second order model has been developed using experimental data to predict the adsorption kinetic constant and equilibrium adsorption capacity. The results showed that the adsorption process could be satisfactorily described with the reaction model and were reasonably explained by assuming an adsorption mechanism in the ion exchange process. Overall, the results from this study demonstrated that the biomassderived char can be used as a low-cost adsorbent for the removal of environmental cationic organic pollutants from the water environment.