Stable isotopes are an increasingly important tool in trophic linkage ecological studies. In studies of large marine animals, isotopic sampling is often given secondary priority to sampling for diversity and biomass aspects. Consequently, isotopic samples are frequently collected subsequent to repeated freezing and thawing of animals, and the results of these studies are often based on the assumption that this pre-treatment does not affect the isotopic values. Our study tested this assumption and examined the difference between oven- and freeze-drying on isotopic values and elemental carbon-to-nitrogen (C:N) ratios. The values for δ(15)N and δ(13)C, percentage nitrogen and carbon, and the C:N ratios were determined from the tissues of six marine species, including invertebrates and fish, as (1) fresh samples, (2) samples thawed once, and (3) samples thawed twice. The drying method, thawing treatment and their interaction did significantly affect the δ(15)N and δ(13)C isotope values for all species. Oven-dried samples had slightly higher δ(13)C and δ(15)N values than freeze-dried samples, although not significant in most instances. For most species, oven-drying produced lower carbon and nitrogen percentage than freeze-drying for samples that had been thawed once, but the C:N ratio was unaffected by the drying method. Repeated freezing and thawing did not affect the isotope values, but it did decrease the percentage carbon and nitrogen for both desiccation methods. We recommend drying samples from fresh wherever possible, and careful choice of desiccation method in light of the fact that most lipid models are based on oven-dried samples and oven-drying could cause enrichment of (15)N or (13)C through evaporation of volatile compounds richer in lighter isotopes such as some lipids. Finally, we recommend that further studies on the specific effects of freezing and desiccation on elasmobranchs is needed. Overall we recommend the use of freeze-drying when possible and to use the samples from freshly caught organisms.