This study examined three transport systems used to transport fresh, non-stored cut flowers from Bogotá, Colombia, to the United States on a monthly basis for 1 year. Five cultivars of cut rose (Rosa hybrida), alstroemeria (Alstroemeria peruviana), carnation (Dianthus caryophyllus), and gerbera (Gerbera jamesonii) were commercially transported using a 7-day conventional distribution system with temperature controls and two rapid transport systems (3-day or 24-hour) with little or no temperature controls, respectively. Temperatures during the 24-hour transport system increased steadily and temperatures were at or above 10 °C for ≈18 h, with half of that time above 15 °C for all shipments. The 3- and 7-day systems had temperature fluctuations ranging from 3 to 24 °C and 3 to 19 °C, respectively. Flowers transported using the rapid transport systems had a significantly longer vase life compared with the 7-day transport in 83% of the shipments of alstroemeria and roses, in 58% of the shipments of carnations, and in 50% of the shipments of gerberas. Vase life increased 5.6% to 17.1% (0.7 to 2.1 days) for roses, 3.2% to 16.7% (0.5 to 2.7 days) for alstroemerias, 12.8% to 34.6% (1.1 to 6.2 days) for gerberas, and 4.6% to 8.8% (1.1 to 2.3 days) for carnations when using the rapid transport systems compared with the 7-day transport system. Some cultivars were more tolerant of the longer transport. The results show that when using fresh, non-stored flowers, the rapid transport systems had equal or longer vase life than the 7-day transport system in the majority of shipments for each flower species. Results also demonstrate that better temperature management during transport is a critical issue in the floral industry that needs to be improved upon.