In this study, silicone nanoparticles (SiNPs) were prepared from polydimethylsiloxane (PDMS) and tetraethyl orthosilicate (TEOS) via the sol-gel process. The resultant SiNPs were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and scanning electron microscope (SEM). These SiNPs were then blended with 2-hydroxyethylmethacrylate (HEMA) and 1-vinyl-2-pyrrolidinone (NVP) before polymerizing into hydrogel contact lenses. All hydrogels were subject to characterization, including equilibrium water content (EWC), contact angle, and oxygen permeability (Dk). The average diameter of SiNPs was 330 nm. The results indicated that, with the increase of SiNPs content, the oxygen permeability increased, while the EWC was affected insignificantly. The maximum oxygen permeability attained was 71 barrer for HEMA-NVP lens containing 1.2 wt% of SiNPs with an EWC of 73%. These results demonstrate that by loading a small amount of SiNPs, the Dk of conventional hydrogel lenses can be improved greatly. This approach would be a new method to produce oxygen-permeable contact lenses.