Vision is the most important sensory modality to anurans and a great deal of work in terms of hodological, physiological, and behavioral studies has been devoted to the visual system. The aim of this account is to survey data about the distribution of peptides in primary (lateral geniculate complex, pretectum, tectum) and secondary (striatum, anterodorsal and anteroventral tegmental nuclei, isthmic nucleus) visual relay centers. The emphasis is on general traits but interspecies variations are also noted. The smallest amount of peptide-containing neuronal elements was found in the lateral geniculate complex, where primarily nerve fibers showed immunostaining. All peptides found in the lateral geniculate complex, except two, occurred in the pretectum together with four other peptides. A large number of neurons showing intense neuropeptide thyrosine-like immunoreactivity was characteristic here. The mesencephalic tectum was the richest in peptide-like immunoreactive neuronal elements. Almost all peptides investigated were present mainly in fibers, but 9 peptides were found also in cells. The immunoreactive fibers show a complicated overlapping laminar arrangement. Cholecystokinin octapeptide, enkephalins, neuropeptide tyrosine, and substance P (not discussed here) gave the most prominent immunoreactivity. Several peptides also occur in the tectum of fishes, reptiles, birds, and mammals. Peptides in various combinations were found in the striatum, the anterodorsal- and anteroventral tegmental nucleus, and the isthmic nucleus that receive projections from the primary visual centers. The functional significance of peptides in visual information processing is not known. The only exception is neuropeptide tyrosine, which was found to be inhibitory on retinotectal synapses.