OBJECTIVE:To evaluate the respiratory systems of male and female rats maintained in individually ventilated cages (IVCs) from birth until adulthood.METHODS:Female Wistar rats were housed in individually ventilated cages or conventional cages (CCs) and mated with male Wistar rats. After birth and weaning, the male offspring were separated from the females and kept in cages of the same type until 12 weeks of age.RESULTS:The level of food consumption was lower in male offspring (IVC=171.7±9; CC=193.1±20) than in female offspring (IVC=100.6±7; CC=123.4±0.4), whereas the water intake was higher in female offspring (IVC=149.8±11; CC=99.2±0) than in male offspring (IVC=302.5±25; CC=249.7±22) at 11 weeks of age when housed in IVCs. The cage temperature was higher in individually ventilated cages than in conventional cages for both male (IVCs=25.9±0.5; CCs=22.95±0.3) and female (IVCs=26.2±0.3; CCs=23.1±0.3) offspring. The respiratory resistance (IVC=68.8±2.8; CC=50.6±3.0) and elastance (IVC=42.0±3.9; CC=32.4±2.0) at 300 µm/kg were higher in the female offspring housed in ventilated cages. The ciliary beat values were lower in both the male (IVCs=13.4±0.2; CC=15±0.4) and female (IVC=13.5±0.4; CC=15.9±0.6) offspring housed in individually ventilated cages than in those housed in conventional cages. The total cell (IVC=117.5±9.7; CC=285.0±22.8), neutrophil (IVC=13.1±4.8; CC=75.6±4.1) and macrophage (IVC=95.2±11.8; CC=170.0±18.8) counts in the bronchoalveolar lavage fluid were lower in the female offspring housed in individually ventilated cages than in those housed in conventional cages.CONCLUSIONS:The environmental conditions that exist in individually ventilated cages should be considered when interpreting the results of studies involving laboratory animals. In this study, we observed gender dimorphism in both the water consumption and respiratory mechanics of rats kept in ventilated cages.