Abstract-This paper studies the performance of ultra-wideband (UWB) radio communications systems employing phase shift keying (PSK) modulation and fully saturated power amplifiers through additive white Gaussian noise (AWGN) channel or Rayleigh fading channel. An impulse response method is provided to analyze the signal-to-noise ratio (SNR) degradation. Both convolutional code and turbo code are employed with the Viterbi decoding and the iterative decoding, respectively. The decoding algorithms are modified for the Rayleigh fading channel. Near optimal bit error rate (BER) performance is achieved when employing either convolutional code or turbo code. The simulation results match the derivation. Therefore, fully saturated power amplifiers can be employed in UWB PSK systems to significantly reduce radio cost, simplify radio circuit, and increase battery life for portable terminals.Index Terms-Bit error rate (BER), fading channel, modulation, nonlinear radio channel, ultra-wideband (UWB).