Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fire blight, caused by Erwinia amylovora, is the most serious bacterial disease of pear and apple trees. Biological control with strains of Pantoea agglomerans (syn. Erwinia herbicola) may provide an effective disease management strategy for fire blight. Most strains of P. agglomerans evaluated for suppression of fire blight produce compounds that inhibit the growth of E. amylovora in culture. The role of these inhibitory compounds in fire blight suppression in orchard environments has not been studied. In seven field trials in Oregon, we compared the population dynamics and disease suppression with P. agglomerans Eh252, a strain that produces a single antibiotic, with its near-isogenic antibiotic-deficient derivative, strain 10:12. Water or suspensions of Eh252 or 10:12 (1 x 10(8) CFU/ml) were applied at 30 and 70% bloom to pear or apple trees. Aqueous suspensions of freeze-dried cells of E. amylovora (3 x 10(5) CFU/ml) were applied at full bloom. Additional trees were treated with streptomycin or oxytetracycline at 30 and 70% bloom and in some experiments, 1 day after application of the pathogen. Population sizes of Eh252 or 10:12 on pear blossoms were estimated by spreading dilutions of blossom washes on culture media. Average population sizes of Eh252 and 10:12 on blossoms ranged from 10(5) to 10(7) CFU, and in five of six trials, the relative area under the population curve of Eh252 was not significantly different than that of its derivative 10:12. Both Eh252 and 10:12 reduced the growth of the pathogen on blossoms compared with inoculated water-treated controls. Eh252 significantly decreased the incidence of fire blight in six of seven field trials compared with the incidence on water-treated trees, and 10:12 similarly reduced the incidence of fire blight in four of seven trials. In three of seven field trials, trees treated with Eh252 had a significantly lower incidence of fire blight compared with trees treated 3 with 10:12. Overall,3 Eh252 reduced the incidence of fire blight by 55 +/- 8%, 10:12 by 30 +/- 6%, streptomycin by 75 +/- 4%, and oxytetracycline by 16 +/- 14%. The effectiveness of strain 10:12 compared with water treatment indicates that other mechanisms (e.g., competitive exclusion or habitat modification) also contribute to disease suppression by P. agglomerans. The increased suppression of fire blight by the parental strain Eh252 compared with the antibiotic-deficient mutant 10:12 indicates that antibiosis is an important mechanism of biological control of fire blight.
Fire blight, caused by Erwinia amylovora, is the most serious bacterial disease of pear and apple trees. Biological control with strains of Pantoea agglomerans (syn. Erwinia herbicola) may provide an effective disease management strategy for fire blight. Most strains of P. agglomerans evaluated for suppression of fire blight produce compounds that inhibit the growth of E. amylovora in culture. The role of these inhibitory compounds in fire blight suppression in orchard environments has not been studied. In seven field trials in Oregon, we compared the population dynamics and disease suppression with P. agglomerans Eh252, a strain that produces a single antibiotic, with its near-isogenic antibiotic-deficient derivative, strain 10:12. Water or suspensions of Eh252 or 10:12 (1 x 10(8) CFU/ml) were applied at 30 and 70% bloom to pear or apple trees. Aqueous suspensions of freeze-dried cells of E. amylovora (3 x 10(5) CFU/ml) were applied at full bloom. Additional trees were treated with streptomycin or oxytetracycline at 30 and 70% bloom and in some experiments, 1 day after application of the pathogen. Population sizes of Eh252 or 10:12 on pear blossoms were estimated by spreading dilutions of blossom washes on culture media. Average population sizes of Eh252 and 10:12 on blossoms ranged from 10(5) to 10(7) CFU, and in five of six trials, the relative area under the population curve of Eh252 was not significantly different than that of its derivative 10:12. Both Eh252 and 10:12 reduced the growth of the pathogen on blossoms compared with inoculated water-treated controls. Eh252 significantly decreased the incidence of fire blight in six of seven field trials compared with the incidence on water-treated trees, and 10:12 similarly reduced the incidence of fire blight in four of seven trials. In three of seven field trials, trees treated with Eh252 had a significantly lower incidence of fire blight compared with trees treated 3 with 10:12. Overall,3 Eh252 reduced the incidence of fire blight by 55 +/- 8%, 10:12 by 30 +/- 6%, streptomycin by 75 +/- 4%, and oxytetracycline by 16 +/- 14%. The effectiveness of strain 10:12 compared with water treatment indicates that other mechanisms (e.g., competitive exclusion or habitat modification) also contribute to disease suppression by P. agglomerans. The increased suppression of fire blight by the parental strain Eh252 compared with the antibiotic-deficient mutant 10:12 indicates that antibiosis is an important mechanism of biological control of fire blight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.